interact with Keboola Connection Data Platform. This server provides tools for listing and accessing data from Keboola Storage API.
Unlock the power of your Keboola data within Large Language Model (LLM) applications with the Keboola Model Context Protocol (MCP) Server. This robust tool provides a standardized interface for connecting LLMs to your Keboola Connection data, enabling AI-powered insights and workflows.
Simplify the installation process with Smithery:
npx -y @smithery/cli install keboola-mcp-server --client claude
Clone the Repository:
git clone https://github.com/keboola/keboola-mcp-server.git cd keboola-mcp-server
Create a Virtual Environment:
python3 -m venv .venv source .venv/bin/activate pip3 install -U pip
Install the Package:
pip3 install -e .
Install Development Dependencies (Optional):
pip3 install -e ".[dev]"
Locate the Configuration File:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
Add the Keboola MCP Server Configuration:
{ "mcpServers": { "keboola": { "command": "/path/to/keboola-mcp-server/.venv/bin/python", "args": [ "-m", "keboola_mcp_server", "--api-url", "https://connection.YOUR_REGION.keboola.com" ], "env": { "KBC_STORAGE_TOKEN": "your-keboola-storage-token", "KBC_WORKSPACE_SCHEMA": "your-workspace-schema" } } } }
/path/to/keboola-mcp-server
with the actual path to your cloned repository.YOUR_REGION
with your Keboola region (e.g., north-europe.azure
). Omit if your region is simply connection
.your-keboola-storage-token
with your Keboola Storage API token.your-workspace-schema
with your Snowflake schema or BigQuery dataset name.Important Notes:
command
accordingly (e.g., /path/to/keboola-mcp-server/.venv/bin/python3.11
).Restart Claude Desktop: Ensure a complete restart (not just closing the window).
Verify Connection: Look for the hammer icon in the bottom right corner.
Locate the Configuration File: ~/.cursor/mcp.json
Choose a Transport Method: Server-Sent Events (SSE) or Standard I/O (stdio).
{ "mcpServers": { "keboola": { "url": "http://localhost:8000/sse?storage_token=YOUR-KEBOOLA-STORAGE-TOKEN&workspace_schema=YOUR-WORKSPACE-SCHEMA" } } }
{ "mcpServers": { "keboola": { "command": "/path/to/keboola-mcp-server/.venv/bin/python", "args": [ "-m", "keboola_mcp_server", "--transport", "stdio", "--api-url", "https://connection.YOUR_REGION.keboola.com" ], "env": { "KBC_STORAGE_TOKEN": "your-keboola-storage-token", "KBC_WORKSPACE_SCHEMA": "your-workspace-schema" } } } }
For running the MCP server from Windows Subsystem for Linux:
{ "mcpServers": { "keboola": { "command": "wsl.exe", "args": [ "bash", "-c", "'source /wsl_path/to/keboola-mcp-server/.env", "&&", "/wsl_path/to/keboola-mcp-server/.venv/bin/python -m keboola_mcp_server.cli --transport stdio'" ] } } }
Create a .env
file in your WSL environment:
export KBC_STORAGE_TOKEN="your-keboola-storage-token" export KBC_WORKSPACE_SCHEMA="your-workspace-schema"
Important Notes:
Replace placeholders with your actual values.
For SSE, ensure the MCP server is running:
/path/to/keboola-mcp-server/.venv/bin/python -m keboola_mcp_server --transport sse --api-url https://connection.YOUR_REGION.keboola.com
For Keboola projects using BigQuery, set the GOOGLE_APPLICATION_CREDENTIALS
environment variable:
GOOGLE_APPLICATION_CREDENTIALS
to the full path of the downloaded JSON file.pytest
black . && isort .
mypy .
By leveraging the Keboola MCP Server, you can seamlessly integrate your Keboola data with LLM applications, unlocking new possibilities for AI-driven insights and automation.
๐ โ๏ธ Biomedical research server providing access to PubMed, ClinicalTrials.gov, and MyVariant.info.
๐ MCP server that provides SQL analysis, linting, and dialect conversion using [SQLGlot](https://github.com/tobymao/sqlglot)
๐ ๐ All-in-one MCP server for Postgres development and operations, with tools for performance analysis, tuning, and health checks
Supabase MCP Server with support for SQL query execution and database exploration tools